مروری بر تاثیر جایگزینی کاتیون ها بر خواص اسپینل های ترکیبی بر پایه ی کبالت، روی و منیزیم

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی شیمی، دانشکده مهندسی شیمی، دانشگاه صنعتی ارومیه، ارومیه، ایران

/2017.6.21.2

چکیده

امروزه استفاده از نانوذرات CoAl2O4 و، MgAl2O4 و ZnAl2O4 به عنوان پرکاربردترین
ساختارهای اسپینلی در صنعت کاتالیست، پایه ی کاتالیست و رنگدانه ی معدنی رایج شده است.
مطالعات انجام گرفته نشان می دهد که استفاده ی جداگانه از اسپینل ها کارایی لازم را نداشته
و در سال های اخیر استفاده ی ترکیبی و همزمان از آن ها مورد توجه قرارگرفته است. در
تحقیق حاضر، ضمن بررسی خصوصیات و دلایل عدم کارایی مناسب نانوذرات مذکور، تاثیر
جایگزینی کاتیون های M = Zn, Mg, Mn, Ba, Sr در ساختار CoxM1-xAl2O4 به عنوان
یکی از روش های نوین بهبود عملکرد اسپینل ها مطالعه شده است. نتایج حاصل، نشان می دهد که
استفاده از کاتیون های مذکور به طور قابل توجهی موجب بهبود خواص کامپوزیت شده است که از
جمله ی آن می توان به کنترل پدیده ی تبادل یون بین دو جایگاه تتراهدرال و اکتاهدرال کبالت
آلومینات، کاهش هزینه ی تولید و سمیت این ماده با جایگزینی Zn اشاره نمود.

کلیدواژه‌ها

موضوعات


1- Xia Y, Takeshige H, Noguchi H, Yoshio M. Studies on an Li-Mn-O spinel system (obtained by meltimpregnation) as a cathode for 4V lithium batteries part 1. Synthesis and electrochemical behaviour of LixMn2O4. Journal of power sources. 56, 1995, 61-67.
2- Nagaraja AR, Stone KH, Toney MF, Peng H, Lany S, Mason TO. Experimental characterization of a theoretically designed candidate p-type transparent conducting oxide: Li-doped Cr2MnO4. Chemistry of materials. 26(15), 2014, 4598-4604.
3- E. J. Verwey, P. W. Haayman, and F. C. Romeijn. Physical properties and cation arrangement of oxides with spinel structures II electronic conductivity. The journal of chemical physics.15, 1947, 182-187
4- Gopal Reddy C, Manorama S and Rao V. Semiconducting gas sensor for chlorine based on inverse spinel nickel ferrite. Sensors and actuators chemical. 55, 1999, 90-95
5- Wrzyszcz J, Zawadzki M, Trzeciak AM, Ziółkowski JJ. Rhodium complexes supported on zinc aluminate spinel as catalysts for hydroformylation and hydrogenation: preparation and activity. Journal of molecular catalysis A: chemical. 189(2), 2002, 203-210.
6-Grabowska H, Mis W, Trawczyn J, Wrzyszcz J, Zawadzki M. Catalytic alkylation of phenol with methanol over zinc aluminate. Research on chemical intermediates. 27(3), 2001, 305-313.
7-Maniecki T, Mierczyński P, Jóźwiak W. Copper-supported catalysts in methanol synthesis and water gas shift reaction. Kinetics and catalysis. 51(6), 2010, 843-848.
8-Foletto EL, Battiston S, Simões JM, Bassaco MM, Pereira LSF, de Moraes Flores ÉM, et al. Synthesis of ZnAl2O4 nanoparticles by different routes and the effect of its pore size on the photocatalytic process. Microporous and mesoporous materials. 163, 2012, 29-33.
 
9- Battiston S, Rigo C, Severo EdC, Mazutti MA, Kuhn RC, Gündel A, et al. Synthesis of zinc aluminate (ZnAl2O4) spinel and its application as photocatalyst. Materials research. 17(3), 2014, 734-738.
10- Gusmano G, Montesperelli G, Traversa E, Mattogno G. Microstructure and electrical properties of MgAl2O4 thin films for humidity sensing. Journal of the american ceramic society. 76(3), 1993, 743-750.
11- Lu G, Miura N, Yamazoe N. High-temperature sensors for NO and NO2 based on stabilized zirconiaand spinel-type oxide electrodes. Journal of materials chemistry. 7(8), 1997, 1445-1449.
12- Reddy CG, Manorama S, Rao V. Semiconducting gas sensor for chlorine based on inverse spinel nickel ferrite. sensors and actuators B: chemical. 55(1), 1999, 90-95.
13- Pratibha Rao,  Rajeev C. Chikate, and   Sunita Bhagwat. Highly responsive and stable Y3+ doped NiMg–ferrite thick films as an efficient humidity sensor. New journal of chemistry. 40(2), 2016, 1720-1728
14- Andris Šutka, Kārlis A. Gross. Spinel ferrite oxide semiconductor gas sensors. Sensors and actuators B: chemical. 222, 2016, 95-105.
15- Pengjun Ma, Qingfen Geng, Xianghu Gao, Shengrong Yang, Gang Liu. Solution combustion of spinel CuMn2O4 ceramic pigments for thickness sensitive spectrally selective (TSSS) paint coatings. 42(10), 2016, 11966-11973.
16- Andréa Kalendová, Alkalising and neutralising effects of anticorrosive pigments containing Zn, Mg, Ca, and Sr cations, Progress in organic coatings, 38, 2000, 199-206.
17- Natalia Betancur Granados, Eongyu Yi, Richard M. Laine, Oscar Jaime Restrepo Baena. Synthesis of Zn1−xCoxAl2O4 spinel nanoparticles by liquid-feed flame spray pyrolysis. Ceramic pigments application. 68(1), 2016, 304-310.
18-Qikun Wang, Qibing Chang, Yongqing Wang, Xia Wang, Jian-er Zhou. Ultrafine CoAl2O4 ceramic pigment prepared by Pechini-sacrificial agent method. Materials letters. 173, 2016, 64-67.
19-Salem S, Jazayeri SH, Bondioli F, Allahverdi A, Shirvani M. Characterizing thermal behavior of ceramic glaze containing nano-sized cobalt-aluminate pigment by hot stage microscopy. Thermochimica acta. 521(1), 2011, 191-196.
20- Salem S, Jazayeri SH, Bondioli F, Allahverdi A, Shirvani M, Ferrari AM. CoAl2O4 nano pigment obtained by combustion synthesis. International journal of applied ceramic technology. 9(5), 2012, 968-978.
21- Ahmed I, Shama S, Moustafa M, Dessouki H, Ali A. Synthesis and spectral characterization of CoxMg1-xAl2O4 as new nano-coloring agent of ceramic pigment. Spectrochimica acta Part A: molecular and biomolecular spectroscopy. 74(3), 2009, 665-672.
 -22 سعیدباغشاهی،منیرهچادربافزاده،محمدمسعودمحبی;" بررسیساختارینانورنگدانههایآلومیناتکبالت- رویساختهشدهبهروشاحتراقژل" گروهمهندسیمواد،دانشکدهفنیومهندسی،دانشگاهبینالمللیامامخمینی;زمستان 1391
23- Kumar M, Seshagiri T, Mohapatra M, Natarajan V, Godbole S. Synthesis, characterization and studies of radiative properties on Eu3+ doped ZnAl2O4. Journal of luminescence. 132(10), 2012, 2810-2816.
24- Mwenesongole E. A Raman-and XRD study of the crystal chemistry of cobalt blue, Ph.D. Thesis, university of pretoria, 2008.
25-Burdett JK, Price GD, Price SL. Role of the crystal-field theory in determining the structures of spinels. Journal of the american chemical society. 104(1), 1982, 92-95.
26-Nakatsuka A, Ikeda Y, Yamasaki Y, Nakayama N, Mizota T. Cation distribution and bond lengths in CoAl2O4 spinel. Solid state communications. 128(2), 2003, 85-90.
27-Tilley RJ. Understanding solids: the science of materials: John Wiley & Sons, 2004.
28-Santos L, Chartier T, Pagnoux C, Baumard J, Santillii C, Pulcinelli SH, et al. Tin oxide nanoparticle formation using a surface modifying agent. Journal of the european ceramic society. 24(15), 2004, 3713-3721.
29-Sarathi R, Sindhu T, Chakravarthy S. Generation of nano aluminium powder through wire explosion process and its characterization. Materials characterization. 58(2), 2007, 148-155.
30- Kim JH, Hong YC, Uhm HS. Synthesis of oxide nanoparticles via microwave plasma decomposition of initial materials. Surface and coatings technology. 201(9), 2007, 5114-5120.
31- El-Eskandarany MS. Mechanical alloying: For fabrication of advanced engineering materials: William andrew, 2001.
32-Chin P, Ding J, Yi J, Liu B. Synthesis of FeS2 and FeS nanoparticles by high-energy mechanical milling and mechanochemical processing. Journal of alloys and compounds. 390(1), 2005, 255-60.
33- Rydin R, Maurice D, Courtney T. Milling dynamics: part I. Attritor dynamics: results of a cinematographic study. Metallurgical transactions A. 24(1), 1993, 175-85.
34- Köhler, M. and Fritzsche, W, ,Nanotechnology: An introduction to nanostructuring techniques. Wiley-VCH Verlag & Co. KGA. (2004)
35-  L.B Kong, , J Ma, H Huang. MgAl2O4 spinel phase derived from oxide mixture activated by a high-energy ball milling process. Materials letters. 56(3), 2002, 238-243.
36- Varin R, Chiu C, Czujko T, Wronski Z. Feasibility study of the direct mechano-chemical synthesis of nanostructured magnesium tetrahydroaluminat (alanate) [Mg(AlH4)2] complex hydride. Nanotechnology. 16(10), 2005, 2261-2274.
37- Sakka S. Handbook of sol-gel science and technology. First chapter; Sol-gel processing: Springer science & business media. 2005.
38- Hui Li,  Yuqin Liu, Junkai Tang, Yanxi Deng. Synthesis, characterization and photocatalytic properties of Mg1_xZnxAl2O4 spinel nanoparticles. Solid state sciences. 58, 2016, 14-21
39- Nuernberg GD, Foletto EL, Probst LF, Campos CE, Carreño NL, Moreira MA. A novel synthetic route for magnesium aluminate (MgAl2O4) particles using metal–chitosan complexation method. Chemical engineering journal. 193, 2012, 211-214.
40- Cui H, Feng Y, Ren W, Zeng T, Lv H, Pan Y. Strategies of large scale synthesis of monodisperse nanoparticles. Recent patents on nanotechnology. 3(1), 2009, 32-41.
41- Vestal CR, Zhang ZJ. Normal micelle synthesis and characterization of MgAl2O4 spinel nanoparticles. Journal of solid state chemistry. 175(1), 2003, 59-62.
42- Chandradass J, Balasubramanian M, Bae DS, Kim J, Kim KH. Effect of water to surfactant ratio (R) on the particle size of MgAl2O4 nanoparticle prepared via reverse micelle process. Journal of alloys and compounds. 491(1), 2010, 25-28.
43- Bućko MM, Haberko K. Hydrothermal synthesis of nickel ferrite powders, their properties and sintering. Journal of the european ceramic society. 27(2), 2007, 723-727.
44- Corradi AB, Bondioli F, Ferrari A, Manfredini T. Synthesis and characterization of nanosized ceria powders by microwave–hydrothermal method. Materials research bulletin. 41(1), 2006, 38-44.
45-Byrappa K, and Yoshimura, M. Handbook of hydrothermal technology a technology for crystal growth and materials processing. Noyes publications. 2008, 42-39
46- Zhang X. Hydrothermal synthesis and catalytic performance of high-surface-area mesoporous nanocrystallite MgAl2O4 as catalyst support. Materials chemistry and physics. 116(2), 2009, 415-420.
47- Motevalian A, Salem S. Effect of glycine–starch mixing ratio on the structural characteristics of MgAl2O4 nano-particles synthesized by sol–gel combustion. Particuology. 24, 2016, 108-112.
48- Prabhakaran K, Patil D, Dayal R, Gokhale N, Sharma S. Synthesis of nanocrystalline magnesium aluminate ( MgAl2O4 ) spinel powder by the urea–formaldehyde polymer gel combustion route. Materials research bulletin. 44(3), 2009, 613-618.
49- Santos AMM, Lameiras FS, Vasconcelos WL. Synthesis of nanostructured silica via sol–gel process with incorporation of cesium compound. Journal of materials processing technology. 118(1), 2001, 199-204.
50- Nersisyan H, Won H, Won C, Lee J. Study of the combustion synthesis process of nanostructured WC and WC–Co. Materials chemistry and physics. 94(1), 2005, 153-158.
51-Suciu C, Gagea L, Hoffmann A, Mocean M. Sol–gel production of zirconia nanoparticles with a new organic precursor. Chemical engineering science. 61(24), 2006, 7831-7835.
52- Ye G, Oprea G, Troczynski T. Synthesis of MgAl2O4 spinel powder by combination of sol–gel and precipitation processes. Journal of the american ceramic society. 88(11), 2005, 3241-3244.
53- Kashi MB, Aghababazadeh R, Arabi H, Mirhabibi A. In situ fabrication of carbon nanotube–MgAl2O4 nanocomposite powders through hydrogen-free CCVD. Advanced powder technology. 25(1), 2014, 250-254.
54- Hadian N, Rezaei M. Combination of dry reforming and partial oxidation of methane over Ni catalysts supported on nanocrystalline MgAl2O4.  Fuel. 113, 2013, 571-579.
55- Jeong H, Kang M. Hydrogen production from butane steam reforming over Ni/Ag loaded MgAl2O4 catalyst. Applied catalysis B: environmental. 95, 2010, 446-55.
56- Olhero SM, Ganesh I, Torres PM, Ferreira JM. Surface passivation of MgAl2O4 spinel powder by chemisorbing H3PO4 for easy aqueous processing. Langmuir. 24(17), 2008,9525-30.
57- Tabaza W, Swart H, Kroon R. Luminescence of Ce doped MgAl2O4 prepared by the combustion method. Physica B: Condensed matter. 439, 2014, 109-114.
58- Salem S. Application of autoignition technique for synthesis of magnesium aluminate spinel in nano scale: Influence of starting solution pH on physico-chemical characteristics of particles. Materials chemistry and physics. 155, 2015, 59-66.
59- Bocanegra SA, Ballarini AD, Scelza OA, de Miguel SR. The influence of the synthesis routes of MgAl2O4 on its properties and behavior as support of dehydrogenation catalysts. Materials chemistry and physics. 111(2), 2008, 534-541.
60- Lavat AE, Grasselli MC, Lovecchio EG. Effect of α and γ polymorphs of alumina on the preparation of MgAl2O4 -spinel-containing refractory cements. Ceramics international. 36(1), 2010, 15-21.
61- Morita K, Kim B-N, Yoshida H, Zhang H, Hiraga K, Sakka Y. Effect of loading schedule on densification of MgAl2O4 spinel during spark plasma sintering (SPS) processing. Journal of the european ceramic society. 32(10), 2012, 2303-2309.
62- Vinnik I, Zenkov V, Sirotyuk M, Koval'skii L, Uvarova I. Ceramic humidity sensors based on magnesium aluminate spinel. II. Relation between the parameters of water adsorption kinetics and the service characteristics of ceramic humidity sensors in the MgAl2O4 system. Powder metallurgy and metal ceramics. 37(7-8), 1998, 382-385.
63- Laobuthee A, Wongkasemjit S, Traversa E, Laine RM. MgAl2O4 spinel powders from oxide one pot synthesis (OOPS) process for ceramic humidity sensors. Journal of the european ceramic society. 20(2), 2000, 91-97.
64- Glaubitt W, Watzka W, Scholz H, Sporn D. Sol-gel processing of functional and structural ceramic oxide fibers. Journal of sol-gel science and technology. 8(1-3), 1997, 29-33.
65- Koroleva L. Synthesis of spinel-based ceramic pigments from hydroxycarbonates. Glass and Ceramics. 61(9-10), 2004, 299-302.
66- Thomé L, Gentils A, Jagielski J, Garrido F, Thomé T. Radiation stability of ceramics: test cases of zirconia and spinel. Vacuum. 81(10), 2007, 1264-1270.
67- Singh V, Chakradhar R, Rao J, Kim D-K. Synthesis, characterization, photoluminescence and EPR investigations of Mn doped MgAl2O4  phosphors. Journal of solid state chemistry. 180(7), 2007, 2067-2074.
68- Nassar MY, Ahmed IS, Samir I. A novel synthetic route for magnesium aluminate (MgAl2O4) nanoparticles using sol–gel auto combustion method and their photocatalytic properties. Spectrochimica Acta Part A: Molecular and biomolecular spectroscopy. 131, 2014, 329-334.
69-Mathur S, Veith M, Haas M, Shen H, Lecerf N, Huch V, et al. SingleSource SolGel Synthesis of Nanocrystalline ZnAl2O4: Structural and Optical Properties. Journal of the american ceramic society. 84(9), 2001, 1921-1928.
70- Guangzhuang Sun, Guangai Sun, Mian Zhong, Shifa Wang, Xiaotao Zu, Xia Xiang. Coordination mechanism, characterization, and photoluminescence properties of spinel ZnAl2O4 nanoparticles prepared by a modified polyacrylamide gel route. 90(3), 2016, 691-699.
71-Satoshi Ishii1,Takayuki Nakane, Takaya Furusawa and Takashi Naka, Synthesis of single-phase ZnAl2O4 nanoparticles via a wet chemical approach and evaluation of crystal structure characteristics. Crystal research and technology. 51(5), 2016, 324-332
72- Alison A. Da Silva, Agnaldo de Souza Gonçalves, Marian R. Davolos. Characterization of nanosized ZnAl2O4 spinel synthesized by the sol–gel method. Journal of sol-gel science and technology. 49, 2009, 101-105.
73-Yang Yang, Dong Sik Kim, Roland Scholz, Mato Knez, Seung Mo Lee, Ulrich Gösele and Margit Zacharias. Hierarchical three-dimensional ZnO and their shape-preserving transformation into hollow ZnAl2O4 nanostructures. 20(10), 2008, 3487-3494.
74- Dat V. Quacha1, Abigail R. Bonifacioa1 and Ricardo H. R. Castro. Water adsorption and interface energetics of zinc aluminate spinel nanoparticles: Insights on humidity effects on nanopowder processing and catalysis. 28(15), 2013, 2004-2011.
75-A S S de Camargo, L A O Nunes1, J F Silva, A C F M Costa, B S Barros, J E C Silva, G F de Sá  and S Alves Jr. Efficient green and red upconversion emissions in Er3+/Yb3+ co-doped ZnAl2O4 phosphor obtained by combustion reaction. Condensed matter. 19, 2007.
76-Salem S. Rapid combustion synthesis of pure nano-crystalline gahnite: Effect of solution pH on powder characteristics. Thermochimica acta. 609, 2015, 75-81.
77- Salem S. Effect of fuel content on formation of zinc aluminate nano and micro-particles synthesised by high rate sol–gel autoignition of glycine-nitrates. Chemical papers. 70(3), 2016, 356-364.
78-Alves C, Oliveira A, Carneiro S, Silva A, Andrade H, de Melo SV, et al. Transesterification of waste frying oil using a zinc aluminate catalyst. Fuel processing technology. 106, 2013, 102-107.
79-Quintana-Solórzano R, Valente J, Hernández-Beltrán F, Castillo-Araiza C. Zinc-aluminates for an in situ sulfur reduction in cracked gasoline. Applied catalysis B: environmental. 81(1), 2008, 1-13.
80- Kumar RT, Selvam NCS, Ragupathi C, Kennedy LJ, Vijaya JJ. Synthesis, characterization and performance of porous Sr(II)-added ZnAl2O4 nanomaterials for optical and catalytic applications. Powder technology. 224, 2012, 147-154.
81- Galetti AE, Gomez MF, Arrua LA, Abello MC. Ethanol steam reforming over ni/znAl2O4 influence of calcination atmosphere and nature of catalytic precursor. Applied catalysis A: General. 408(1), 2011, 78-86.
82-Okal J, Zawadzki M. Catalytic combustion of methane over ruthenium supported on zinc aluminate spinel. Applied catalysis A: General. 453, 2013, 349-57.
83-Fan G, Wang J, Li F. Synthesis of high-surface-area micro/mesoporous ZnAl2O4 catalyst support and application in selective hydrogenation of o-chloronitrobenzene. Catalysis communications. 15(1), 2011, 113-7.
84-Tahereh Gholami, Masoud Salavati-Niasari, Shokufeh Varshoy, Investigation of the electrochemical hydrogen storage and photocatalytic properties of CoAl2O4 pigment: Green synthesis and characterization. International journal of hydrogen energy. 41(22), 2016, 9418-9426.
85-Epifani M, Melissano E, Pace G, Schioppa M. Precursors for the combustion synthesis of metal oxides from the sol–gel processing of metal complexes. Journal of the european ceramic society. 27(1), 2007, 115-123.
86-Chen Z, Shi E, Li W, Zheng Y, Zhong W. Hydrothermal synthesis and optical property of nano-sized CoAl2O4 pigment. Materials Letters. 55(5), 2002, 281-284.
87-Salem S. Effect of calcination temperature on colorant behavior of cobalt-aluminate nano-particles synthesized by combustion technique. Journal of industrial and engineering chemistry. 20(3), 2014, 818-823.
88- Salem S, Jazayeri S, Bondioli F, Allahverdi A, Shirvani M. Characterizing thermal behavior of ceramic glaze containing nano-sized cobalt-aluminate pigment by hot stage microscopy. Thermochimica acta. 521(1), 2011, 191-196.
89-Salem S. Relationship between gel rheology and specific surface area of nano-sized CoAl2O4 powder manufactured by autoignition technique. Materials letters. 139, 2015, 498-500.
90-Lee G-Y, Ryu K-H, Kim H-G, Kim Y-Y. The preparation of blue CoAl2O4 powders by the Malonate method: The effect of the amount of Malonic acid used, the formation pathway of CoAl2O4 crystallites and the characteristics of the prepared powders. Bulletin of the korean chemical society. 30(2), 2009, 373-7.
91-Melo D, Cunha J, Fernandes J, Bernardi M, Melo M, Martinelli A. Evaluation of CoAl2O4 as ceramic pigments. Materials research bulletin. 38(9), 2003, 1559-1564.
92-Ouahdi N, Guillemet S, Durand B, El Ouatib R, Rakho LE, Moussa R, et al. Synthesis of CoAl2O4 by double decomposition reaction between LiAlO2 and molten KCOCl3. Journal of the european ceramic society. 28(10), 2008, 1987-1994.
93- Andrea Kalendová, Jaromír Šňupárek, Petr Kalenda, Nontoxic anticorrosion pigments of the spinel type compared with condensed phosphates. Dyes and pigments. 30(2), 1996, 129-140.
94- Salem S. Phase formation of nano-sized metal aluminates using divalent cations (Mg, Co and Zn) by autoignition technique. Ceramics international. 42(1), 2016, 1140-1149.
95-Kapse S, Raghuwanshi F, Kapse V, Patil D. Characteristics of high sensitivity ethanol gas sensors based on nanostructured spinel Zn1-xCoxAl2O4. Current applied physics. 12(1), 2012, 307-312.
96-Manikandan A, Vijaya JJ, Kennedy LJ, Bououdina M. Microwave combustion synthesis, structural, optical and magnetic properties of Zn1−xSrxFe2O4 nanoparticles. Ceramics international. 39(5), 2013, 5909-5917.
97-Gaudon M, Apheceixborde A, Ménétrier M, Le Nestour A, Demourgues A. Synthesis temperature effect on the structural features and optical absorption of Zn1−xCoxAl2O4 oxides. Inorganic chemistry. 48(19), 2009, 9085-9091.
98-Fernández-Osorio A, Pineda-Villanueva E, Chávez-Fernández J. Synthesis of nanosized Zn1−xCoxAl2O4 spinels: new pink ceramic pigments. Materials Research Bulletin. 47(2), 2012, 445-452.
99- Diana Visinescu a, Carmen Paraschiv b, Adelina Ianculescu c, Bogdan Jurca d, The environmentally benign synthesis of nanosized CoxZn1_xAl2O4 blue pigments. Dyes and pigments. 87, 2010, 125-131.
100-Hedayati H, Alvani AS, Sameie H, Salimi R, Moosakhani S, Tabatabaee F, et al. Synthesis and characterization of Co1−xZnxCr2−yAlyO4 as a near-infrared reflective color tunable nano-pigment. Dyes and pigments. 113, 2015, 588-595.
101- Nakane T, Naka T, Sato K, Taguchi M, Nakayama M, Mitsui T, et al. Spectroscopic and crystallographic anomalies of  Zn1−xCoxAl2O4 spinel oxide. Dalton transactions. 44(3), 2015, 997-1008.
102-Duan X, Wang X, Yu F, Liu X. Effects of Co content and annealing temperature on the structure and optical properties of  Mg1−xCoxAl2O4 nanoparticles. Materials chemistry and physics. 137(2), 2012, 652-659.
103-Tsai W-C, Liou Y-H, Liou Y-C. Microwave dielectric properties of Mg1−xCoxAl2O4 spinel compounds prepared by reaction-sintering process. Materials science and engineering: B. 177(13), 2012, 1133-1137.
104-Jafari M, Hassanzadeh-Tabrizi S, Ghashang M, Pournajaf R. Characterization of Ba2+added alumina/cobalt nanoceramic pigment prepared by polyacrylamide gel method. Ceramics International. 40(8), 2014, 11877-11881.
105-Tongjun L, Dean Y, Lizhi D, Xu L. Influence of Ba2+ on the optical property of cobalt blue. Materials & design. 28(1), 2007, 341-344.
106-Kumar RT, Sagaya Selvam NC, Adinaveen T, Kennedy LJ, Vijaya JJ. Strontium (II)-added CoAl2O4 nanocatalysts for the selective oxidation of alcohols. Reaction kinetics, mechanisms and catalysis. 106(2), 2012, 379-394.
107- Manikandan A, Durka M, Antony SA. One-pot flash combustion synthesis, structural, morphological and opto-magnetic properties of spinel Mn1−xCoxAl2O4 (x=0, 0.3, and 0.5) nanocatalysts. Journal of superconductivity and novel Magnetism. 28(1), 2015, 209-218.