تاثیر اکسید گرافن احیا شده بر تخریب فوتوکاتالیستی ماده رنگزای رودآمین B

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد پژوهشگر، پژوهشکده رنگ و پلیمر، دانشگاه صنعتی امیرکبیر

2 دانشیار پژوهشکده رنگ و پلیمر، دانشگاه صنعتی امیرکبیر

3 استادیار، دانشکده فیزیک، دانشگاه صنعتی شریف

/amnc.2018.7.25.2

چکیده

در این مطالعه تلاش شده است تا یک سامانه کامپوزیتی شامل فوتوکاتالیست ZnV2O6 و اکسید گرافن احیا شده (rGO) ساخته شود. به این منظور در گام نخست پیش‌ساز ZnV2O6 به روش هم‌رسوبی تهیه شد. براساس نتایج بدست آمده، خلوص فازی و ریزساختار نمونه کلسینه شده در دمای 600 درجه سلسیوس به مدت دو ساعت نسبت به سایر نمونه‌ها شرایط بهتری دارد. در گام بعدی، نانوصفحات اکسید گرافن به روش هامرز بهبود یافته تهیه شدند و به روش ترکیبی (شیمیایی و حرارتی) احیا گردیدند. در نهایت نیز، نانوکامپوزیت‌های فوتوکاتالیستی ZnV2O6/rGO از طریق اختلاط مقادیر مشخص از rGO با نانوساختارهای ZnV2O6 تحت امواج فراصوت بدست آمد. فعالیت فوتوکاتالیستی و سینتیک واکنش تخریب ماده رنگزای رودآمین B برای کلوئیدهای مختلف فاقد ذرات فوتوکاتالیست، حاوی نانوذرات ZnV2O6 و حاوی نانوکامپوزیت‌های ZnV2O6/rGO اندازه‌گیری شد؛ نتایج حاکی از عملکرد فوتوکاتالیستی قابل قبول برای پودرهای ZnV2O6 به علت گاف انرژی مناسب این نیمه‌رسانا است. بعلاوه پس از گذشت دو ساعت، میزان تخریب ماده رنگزا برای نمونه حاوی سامانه نانوکامپوزیتی به 71% رسیده است که در مقایسه با عملکرد همین فوتوکاتالیست‌ در غیاب rGO، رشدی معادل 27% درصد نشان می‌دهد. از این رو انتظار می‌رود تا صفحات کربنی علاوه بر افزایش سطح ویژه لایه فوتوکاتالیستی و جذب بیشتر نور برخوردی، با قابلیت به دام انداختن الکترون‌ها و انتقال دادن سریع آنها، از نرخ بازترکیب اکسایتون‌های به وجود آمده در فوتوکاتالیست بکاهند که این امر در نهایت به افزایش عملکرد فوتوکاتالیستی نانوکامپوزیت‌های برپایه ZnV2O6/rGO در تخریب ماده رنگزای رودآمین B منجر شده است.

کلیدواژه‌ها

موضوعات


[1] A. Salama, A. Mohamed, N.M. Aboamera, T.A. Osman, A. Khattab, Photocatalytic degradation of organic dyes using composite nanofibers under UV irradiation, Appl. Nanosci. 8 (2018) 155-161.
[2] S. Thirumalairajan,  K. Girija,  V.R. Mastelaro, N. Ponpandian, Photocatalytic degradation of organic dyes under visible light irradiation by floral-like LaFeO3 nanostructures comprised of nanosheet petals, New J. Chem. 38 (2014) 5480-5490.
[3] L. Zhao, X.F. Chen, X. C. Wang, Y. J. Zhang, W. Wei, Y. H. Sun, M. Antonietti, M.M. Titirici, One-Step solvothermal synthesis of a Carbon-TiO₂ dyade structure effectively promoting visible-light photocatalysis, Adv. Mater. 22 (2010) 3317-3321.
[4] Y. Liu, Hydrothermal synthesis of TiO2-RGO composites and their improved photocatalytic activity in visible light, RSC Adv.4 (2014) 36040-36045.
[5] K. Sivula, F. Le Formal, M. Gratzel, Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes, ChemSusChem 4 (2011) 432-449.
[6] F.F. Abdi, T.J. Savenije, M.M. May, B. Dam, R. van de Krol, The Origin of Slow Carrier Transport in BiVO4 Thin Film Photoanodes: A Time-Resolved Microwave Conductivity Study, J. Phys. Chem. Lett. 4 (2013) 2752-2757.
[7] F.M. Pesci, A.J. Cowan, B.D. Alexander, J.R. Durrant, D.R. Klug, Charge Carrier Dynamics on Mesoporous WO3 during Water Splitting, J. Phys. Chem. Lett. 2, (2011) 1900-1903.
[8] J. Gan, X. Lu, B.B. Rajeeva, R. Menz, Y. Tong, Y. Zheng, Efficient Photoelectrochemical Water Oxidation over Hydrogen-Reduced Nanoporous BiVO4 with Ni-Bi Electrocatalyst, ChemElectroChem. 2 (2015) 1385-1395.
[9] T. Kako, X. Meng, J. Ye, Solid-base loaded WO3 photocatalyst for decomposition of harmful organics under visible light irradiation, APL Mater. 3 (2015) 104411.
[10] J. Zhang, Y. Huang, L. Jin, F. Rosei, F. Vetrone, J.P. Claverie, Efficient Upconverting Multiferroic Core@Shell Photocatalysts: Visible-to-Near-Infrared Photon Harvesting, ACS Appl. Mater. Inter., 9 (2017) 8142-8150.
[11] T. Savio J. A. Moniz, Visible-light driven heterojunction photocatalysts for water splitting: a critical review, Energy Environ. Sci. 8 (2015) 731-759.
[12] T. Chaoran Jiang, Photoelectrochemical devices for solar water splitting: materials and challenges, Chem. Soc. Rev. 46 (2017) 4645-4660.
[13] M. Xiaobo Chen, Semiconductor-based photocatalytic hydrogen generation, Chem. Rev. 110 (2010) 6503–6570.
[14] H.X. Dang, A.J.E. Rettie, C.B. Mullins, Visible-Light-Active NiV2O6 Films for Photoelectrochemical Water Oxidation, J. Phys. Chem. C 119 (2015) 14524-14531.
[15] Q. Yan, G. Li, P.F. Newhouse, J. Yu, K.A. Persson, J.M. Gregoire, Mn2V2O7: an earth abundant light absorber for solar water splitting, Adv Energy Mater. 5 (2015) 1401840-1401846.
[16] J.A. Seabold, N.R. Neale, All first row transition metal oxide photoanode for water splitting, Chem. Mater. 27 (2015) 1005-1013.
[17] L. Sun, Y. Wang, F. Raziq, Y. Qu, L. Bai, L. Jing, Enhanced photoelectrochemical activities for water oxidation and phenol degradation on WO3 nanoplates by transferring electrons and trapping holes, Sci. Rep. 7 (2017) 1303-1310.
[18] Yingfei Hu, Yao Su, Huiting Huang, Qinfeng Qian, Zhongjie Guan, "Enhancement of Photoelectrochemical Performance in Water Oxidation over Bismuth Vanadate Photoanodes by Incorporation with Reduced Graphene Oxide," Chemcatchem, vol. 7, pp. 2979-2985, 2015.
[19] J.K. Meng, Y. Cao, Y. Suo, Y.S. Liu, J.M. Zhang, X.C. Zheng, Hydrothermal Synthesis and Electrochemical Performance of Amorphous SiO2 Nanospheres/Graphene Composites, Electrochim. Acta, 176 (2015) 1001-1009.
[20] Y. Sun, C. Li, L. Wang, Y. Wang, X. Ma, P. Ma, M. Song, Ultralong monoclinic ZnV2O6 nanowires: their shape-controlled synthesis, new growth mechanism, and highly reversible lithium storage in lithium-ion batteries, RSC Adv. 2 (2012) 8110-8115.
[21] A. Senthamizhan, B. Balusamy, Z. Aytac, T. Uyar, Grain boundary engineering in electrospun ZnO nanostructures as promising photocatalysts, CrystEngComm 18 (2016) 6341-6351.
[22] Z. Chen, H. Dinh, E. Miller, Photoelectrochemical water splitting, Springer-Verlag New York 2013.
[23] S. Liu, J. Tian, L.Wang, Y. Luo and X. Sun, One-pot synthesis of CuO nanoflower-decorated reduced graphene oxide and its application to photocatalytic degradation of dyes, Catal. Sci. Technol. 2 (2012) 339-344.
[24] P. Hu, J. Niu, M. Yu, S.Y. Lin, Facile Solvothermal Synthesis of Reduced Graphene Oxide-BiPO4 Nanocomposite with Enhanced Photocatalytic Activity, Chinese J Anal. Chem. 45 (2017) 357-362.