اثر ذرات سیلیکای سنتزی، رزین اورتانی و فلوئوروکربن روی آب/ روغن‌گریزی پنبه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، پژوهشکده رنگ و پلیمر، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 دانشجوی دکتری، دانشکده مهندسی پلیمر و رنگ، دانشگاه صنعتی امیرکبیر، تهران، ایران

/amnc.2018.7.25.7

چکیده

در این مقاله به بررسی اثر اعمال هم‌زمان و غیر هم‌زمان عوامل اتصال‌دهنده عرضی دی متیلول اتیلن اوره (DMDHEU) و ترکیب بر پایه پلی یورتان CERESOL CPN و ترکیب آب/روغن گریز کننده بر پایه فلوئوروکربن FOBUGARD AF300 روی آب‌گریزی، روغن گریزی پارچه پنبه‌ای پرداختیم. و سپس تأثیر ذرات سیلیکا روی آب‌گریزی، روغن گریزی و ثبات شست‌وشویی پارچه پنبه‌ای مورد بررسی قرار گرفت. ذرات سیلیکا با استفاده از TEOS(Tetraethyl orthosilicate) ، اتانول و هیدروکسید آمونیوم که به‌عنوان کاتالیزور برای کنترل اندازه ذرات مورداستفاده قرار می‌گیرد، سنتز شده و روی نمونه اعمال گردید. ذرات سیلیکا هیدروفیل از طریق افزایش زبری سطح می‌توانند موجب بهبود آب‌گریزی و روغن‌گریزی شوند. آب‌گریزی و روغن‌گریزی نمونه‌ها اندازه‌گیری شد. نمونه حاوی 6% عامل اتصال‌دهنده عرضی پلی یورتانی و 8% ترکیب فلوئوروکربن FOBUGARD AF300 دارای مقادیر آب‌گریزی 9 و روغن‌گریزی 6 بود. همچنین، از آنالیزهای سطح، EDS، FESEM برای شناسایی مورفولوژی سطح، آنالیز عنصری، توزیع و اندازه ذرات سیلیکا در سطح پارچه اصلاح‌شده استفاده گردید. اعمال غیر هم‌زمان عوامل شبکه‌ای کننده و فلوئوروکربن موجب بهبود آب‌گریزی و روغن‌گریزی گردید. همچنین، ذرات سیلیکا موجب بهبود ثبات شست‌وشویی اصلاحات صورت گرفته، شد. به‌طوری‌که پس از 5 سیکل شست‌وشو و عملیات حرارتی برای نمونه حاوی 1% ذرات سیلیکای سنتز شده اعداد 6 و 9 به ترتیب برای روغن‌گریزی و آب‌گریزی به دست آمد.

کلیدواژه‌ها

موضوعات


[1] W. Schindler and P. Hauser, "Easy-care and durable press finishes of cellulosics," Chemical finishing of textiles, pp. 51-72, 2004.
[2] Y. Lam, C. Kan, and C. Yuen, "Wrinkle-resistant finishing of cotton fabric with BTCA-the effect of co-catalyst," Textile Research Journal, vol. 81, no. 5, pp. 482-493, 2011.
[3] U. K. Sahin, N. C. Gursoy, P. Hauser, and B. Smith, "Optimization of ionic crosslinking process: an alternative to conventional durable press finishing," Textile Research Journal, vol. 79, no. 8, pp. 744-752, 2009.
[4] V. A. Dehabadi, H.-J. Buschmann, and J. S. Gutmann, "Durable press finishing of cotton fabrics: An overview," Textile Research Journal, vol. 83, no. 18, pp. 1974-1995, 2013.
[5] C. M. Welch, "Formaldehyde-free DP finishing with polycarboxylic acids," American Dyestuff Reporter, vol. 83, no. 9, pp. 19-27, 1994.
[6] W. Xu and T. Shyr, "Applying a nonformaldehyde crosslinking agent to improve the washing durability of fabric water repellency," Textile Research Journal, vol. 71, no. 9, pp. 751-754, 2001.
[7] M. P. Gashti, F. Alimohammadi, and A. Shamei, "Preparation of water-repellent cellulose fibers using a polycarboxylic acid/hydrophobic silica nanocomposite coating," Surface and Coatings Technology, vol. 206, no. 14, pp. 3208-3215, 2012.
[8] L. Yeqiu, H. Jinlian, Z. Yong, and Y. Zhuohong, "Surface modification of cotton fabric by grafting of polyurethane," Carbohydrate polymers, vol. 61, no. 3, pp. 276-280, 2005.
[9] M. Mohsin, C. Carr, and M. Rigout, "Novel one bath application of oil and water repellent finish with environment friendly cross-linker for cotton," Fibers and Polymers, vol. 14, no. 5, pp. 724-728, 2013.
[10] G. Chen, Q. Cong, Y. Feng, and L. Ren, "Study on the wettability and self-cleaning of butterfly wing surfaces," WIT Transactions on Ecology and the Environment, vol. 73, 2004.
[11] J. Genzer and K. Efimenko, "Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review," Biofouling, vol. 22, no. 5, pp. 339-360, 2006.
[12] Y. T. Cheng, D. Rodak, C. Wong, and C. Hayden, "Effects of micro-and nano-structures on the self-cleaning behaviour of lotus leaves," Nanotechnology, vol. 17, no. 5, p. 1359, 2006.
[13] K. Koch, B. Bhushan, and W. Barthlott, "Multifunctional surface structures of plants: an inspiration for biomimetics," Progress in Materials science, vol. 54, no. 2, pp. 137-178, 2009.
[14] M. Lewin and S. Sello, "Handbook of fiber science and technology: chemical processing of fibers and fabrics, functional finishes, vol. II," Part B, Marcel Decker, NY, pp. 144-210, 1984.
[15] M. Abo-Shosha, Z. El-Hilw, A. Aly, A. Amr, and A. S. I. E. Nagdy, "Paraffin wax emulsion as water repellent for cotton/polyester blended fabric," Journal of Industrial Textiles, vol. 37, no. 4, pp. 315-325, 2008.
[16] S. Tragoonwichian, P. Kothary, A. Siriviriyanun, A. Edgar, and N. Yanumet, "Silicon-compound coating for preparation of water repellent cotton fabric by admicellar polymerization," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 384, no. 1-3, pp. 381-387, 2011.
[17] Y. Sato et al., "Effect of crosslinking agents on water repellency of cotton fabrics treated with fluorocarbon resin," Textile research journal, vol. 64, no. 6, pp. 316-320, 1994.
[18] C.-T. Hsieh et al., "Influence of fluorine/carbon atomic ratio on superhydrophobic behavior of carbon nanofiber arrays," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 24, no. 1, pp. 113-117, 2006.
[19] J. Song and O. J. Rojas, "Approaching super-hydrophobicity from cellulosic materials: A Review," Nord. Pulp Pap. Res. J, vol. 28, no. 2, pp. 216-238, 2013.
[20] Q. Zhu, Q. Gao, Y. Guo, C. Q. Yang, and L. Shen, "Modified silica sol coatings for highly hydrophobic cotton and polyester fabrics using a one-step procedure," Industrial & Engineering Chemistry Research, vol. 50, no. 10, pp. 5881-5888, 2011.
[21] H. Zhou, H. Wang, H. Niu, A. Gestos, and T. Lin, "Robust, self‐healing superamphiphobic fabrics prepared by two‐step coating of fluoro‐containing polymer, fluoroalkyl silane, and modified silica nanoparticles," Advanced Functional Materials, vol. 23, no. 13, pp. 1664-1670, 2013.
[22] C.-H. Xue, S.-T. Jia, J. Zhang, and L.-Q. Tian, "Superhydrophobic surfaces on cotton textiles by complex coating of silica nanoparticles and hydrophobization," Thin Solid Films, vol. 517, no. 16, pp. 4593-4598, 2009.
[23] J. A. Bootsma, M. Entorf, J. Eder, and B. H. Shanks, "Hydrolysis of oligosaccharides from distillers grains using organic–inorganic hybrid mesoporous silica catalysts," Bioresource technology, vol. 99, no. 12, pp. 5226-5231, 2008.
[24] K. Fukushima, D. Tabuani, C. Abbate, M. Arena, and P. Rizzarelli, "Preparation, characterization and biodegradation of biopolymer nanocomposites based on fumed silica," European Polymer Journal, vol. 47, no. 2, pp. 139-152, 2011.
[25] T. Soeno, K. Inokuchi, and S. Shiratori, "Ultra-water-repellent surface: fabrication of complicated structure of SiO2 nanoparticles by electrostatic self-assembled films," Applied Surface Science, vol. 237, no. 1-4, pp. 539-543, 2004.
[26] C. Welch and B. Andrews, "Ester Crosslinks: A Route to High Performance Non-Formaldehyde Finishing of Cotton, Textile Chem. Color. 21 (2), 13-17," 1989.
[27] S. P. Rowland, C. M. Welch, M. A. F. Brannan, and D. M. Gallagher, "Introduction of ester cross links into cotton cellulose by a rapid curing process," ed: Sage Publications Sage CA: Thousand Oaks, CA, 1967.
[28] C. M. Welch, "Tetracarboxylic Acids as Formaldehyde-Free Durable Press Finishing Agents: Part I: Catalyst, Additive, and Durability Studies," Textile Research Journal, vol. 58, no. 8, pp. 480-486, 1988.
[29] G. Y. Bae, B. G. Min, Y. G. Jeong, S. C. Lee, J. H. Jang, and G. H. Koo, "Superhydrophobicity of cotton fabrics treated with silica nanoparticles and water-repellent agent," Journal of Colloid and Interface Science, vol. 337, no. 1, pp. 170-175, 2009.
[30] M. P. G. F. A. A. Shamei, "Preparation of water-repellent cellulose fibers using a polycarbixylic acid/hydrophobic silica nanocomposite coating," Surface & Coating Technology, vol. 206, pp. 3208-3215, 2012.
[31] B. Roe and X. Zhang, "Durable hydrophobic textile fabric finishing using silica nanoparticles and mixed silanes," Textile Research Journal, vol. 79, no. 12, pp. 1115-1122, 2009.
[32] M. Parsamanesh, "Effects of crosslinking agent and silica nanoparticles with fluorocarbon on water and oil repellency properties of cellulosic fabric," MSc Amirkabir University of Technology, 2016.
[33] N. Shakib, A. Khoddami, and A. Ataeian, "AN IMPROVEMENT IN FLUOROCARBON CHAIN REORIENTATION BY REACTIVE DYES," 2011.
[34] R. N. Wenzel, "Resistance of solid surfaces to wetting by water," Industrial & Engineering Chemistry, vol. 28, no. 8, pp. 988-994, 1936.